We performed B3PW and B3LYP computations for BaTiO3 (BTO), CaTiO3 (CTO), PbTiO3 (PTO), SrTiO3 (STO), BaZrO3 (BZO), CaZrO3 (CZO), PbZrO3 (PZO) and SrZrO3 (SZO) perovskite neutral (001) along with polar (011) as well as (111) surfaces. For the neutral AO- as well as BO2-terminated (001) surfaces, in most cases, all upper-layer atoms relax inwards, although the second-layer atoms shift outwards. On the (001) BO2-terminated surface, the second-layer metal atoms, as a rule, exhibit larger atomic relaxations than the second-layer O atoms. For most ABO3 perovskites, the (001) surface rumpling s is bigger for the AO- than BO2-terminated surfaces. In contrast, the surface energies, for both (001) terminations, are practically identical. Conversely, different (011) surface terminations exhibit quite different surface energies for the O-terminated, A-terminated and BO-terminated surfaces. Our computed ABO3 perovskite (111) surface energies are always significantly larger than the neutral (001) as well as polar (011) surface energies. Our computed ABO3 perovskite bulk B-O chemical bond covalency increases near their neutral (001) and especially polar (011) surfaces.