Moisture loads in building interiors are accompanied by a deterioration of the indoor air quality. Such a phenomenon may induce serious health risks for building inhabitants as well as degradation of furnishing. Unfortunately, the employment of additional heat, ventilation and air conditioning (HVAC) devices does not comply with the sustainability principle due to increased energy consumption, thus cannot be viewed as an efficient solution. This study deals with the use of superabsorbent polymers (SAP) in cement-lime plasters, thus extends the current state of knowledge and outlines further possible development of novel moisture responsive plasters since lightweight aggregates do not provide the desired performance. To be specific, this paper contemplates the experimental analysis of novel plasters modified by 0.5, 1 and 1.5 wt. % of SAP to obtain input parameters for computational modeling. Based on the obtained outputs, the incorporation of SAP admixture resulted in a substantial increase in moisture transport properties including the water absorption coefficient and water vapor diffusion properties. The performed computational modeling revealed a considerable reduction of relative humidity fluctuations, thus mitigation of potential health issues associated with undesired moisture content in building interiors. Achieved results indicate that the SAP enhanced plasters have substantial passive moisture buffering performance and thus may contribute to the improvement of indoor air quality.