Since the first experiment conducted by William Grove in 1839, fuel cell, a device that converts the chemical energy stored in fuels into electricity through electrochemical reactions with oxygen or other oxidizing agents, has attracted worldwide attention in the past few decades. However, despite extensive research progress, the widespread commercialization of fuel cells is still a big challenge partly because of the low catalytic performance and high-cost of the Pt-based electrocatalysts. In addition, the hydrogen storage is another critical issue for the commercialization of hydrogen-powered fuel cells. Among the metal catalysts, Pd has been found to be a promising alternative because of its excellent catalytic properties and lower cost than Pt. Moreover, Pd-based materials exhibit high hydrogen storage capabilities. In this chapter, we summarize recent progress in the synthesis of one-dimensional (1D) Pd-based nanomaterials and their applications as electrocatalysts on both anodic and cathodic sides of fuel cells, and their applications in hydrogen storage. We demonstrated here that various 1D Pd-based nanomaterials, such as nanorods, nanowires, and nanotubes have been successfully prepared through different synthetic routes. The nanostructured 1D Pd-based materials exhibit high catalytic performance for electrooxidation of small organic molecules and oxygen reduction reaction (ORR). Moreover, high capacities for hydrogen storage have also been reported with 1D Pd-based nanomaterials.