The elaboration of a low-cost and effective approach to synthesize hybrid composite materials based on the conventional thermoplastics and natural biopolymers is a sustainable alternative to the production of “traditional” plastics. Cellulose is one of the most abundant biopolymers. Its fibrils possess outstanding mechanical characteristics and, hence, attract considerable interest of researchers during recent decades. However, modification of the hydrophobic polymer matrix by cellulose fibrils is significantly complicated by the hydrophilic nature of the latter. In this study, we propose an effective and low-cost approach to the synthesis of polystyrene at the cellulose microfibrils composite material via the emulsion polymerization method. The obtained fibrous composite was comprehensively analyzed with FTIR spectroscopy, SEM, TGA, and DSC, and was further employed to produce sponge hybrid materials. We investigated the influence of the cellulose/polystyrene ratio on the density, porosity, pore volume, and water uptake of the obtained sponge materials. The sample containing 70 wt.% of cellulose demonstrated the best water absorption properties while preserving its shape, even after 24 h of floating on water. The produced sponge materials might be employed as sorption materials for the purification and desalination of waters of various origins, filtration, and collection of undesirable elements under specific industrial or natural conditions.