The high efficiency CuInGaSe2 (CIGS) based thin film solar cells have been demonstrated by various groups across the globe. At present, the highest efficiencies are obtained using CdS buffer layers deposited by chemical bath deposition with a record efficiency of 20.9%. However, because of both environmental reasons and the fact that the CdS layer with a band gap of about 2.4-2.5 eV limits the transmittance of the short wavelength light into the absorber, development of a wide-band gap Cd-free buffer layer is currently the most pivotal topic in CIGS thin film PV technology. This thesis focuses on three parts: (i) to establish electrodeposited CuInSe2(CIS) as the absorber for the device fabrication, and (ii) to investigate the charge transport at absorber /buffer interface of the chemical bath deposited (CBD)-Zn(O,S) buffer layer, then last (iii) to develop low temperature solution based ZnSnO as alternative Cd-free buffer for CIS solar cells. Proof-of-concept devices of the electrodeposited CIS with these buffer layers yield power conversion efficiency (PCE) of ~4% for Zn(O,S)/CIS devices and 1.53% for ZnSnO/CIS devices. The first part of the thesis explores a solution based method to fabricate the CIS absorber. Electrodeposition was investigated for this purpose. Two deposition approaches (i) one-step electrodeposition and (ii) stacked elemental layer (SEL) deposition were compared. It was difficult for one step electrodeposition to achieve Cu-poor CIS as a post-selenization etching step using the toxic KCN is required. Moreover, the selenized CIS was porous with small grain size. On the other hand, SEL approach can easily control the Cu/In ratio by controlling the thickness of each layer. Selenization process, which is the most important for the SEL approach, was studied in details. And after a series of analysis and optimization, CIS with Cu/In ratio of 0.85 achieved 3.25% PCE with CdS buffer layer.