An insoluble sulfonated polyphosphazene (SPOP) with high degree of sulfonation is synthesized and used as the proton conductor in polybenzimidazole (PBI) high-temperature proton exchange membrane. Polyfunctional triglycidyl isocyanurate (TGIC) is used as covalent cross-linking agent to obtain a high proton conductivity at low cross-linking degrees. The composite membrane is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD). SPOP has good compatibility with mPBI-TGIC, leading to uniform dispersion in the obtained membranes with neither phase separation nor agglomeration. As a highly efficient cross-linking agent, TGIC not only makes the composite membrane have good mechanical properties, thermal stability, anti-swelling and anti-oxidation properties at low crosslinking degrees, but also leads to high doping amount of SPOP, thus making the composite the membrane have a high proton conductivity. The conductivity of mPBI-TGIC(5%)/SPOP(50%) at 100% RH, 50% RH and 0 RH is 0.143, 0.076 and 0.044 S cm −1 at 180 °C, respectively. In addition, the composite membranes has good methanol resistance and selectivity, so the composite membrane can be applied in the direct methanol fuel cell.