To date there is no cure for Parkinson’s disease (PD), a devastating neurodegenerative disorder with levodopa being the cornerstone of its treatment. In early PD, levodopa provides a smooth clinical response, but after long-term therapy many patients develop motor complications. Tolcapone (TC) is an effective adjunct in the treatment of PD but has a short elimination half-life. In our work, two new controlled delivery systems of TC consisting of biodegradable PLGA 502 (poly (D,L-lactide-co-glycolide acid) microparticles (MPs) and nanoparticles (NPs) were developed and characterized. Formulations MP-TC4 and NP-TC3 were selected for animal testing. Formulation MP-TC4, prepared with 120 mg TC and 400 mg PLGA 502, exhibited a mean encapsulation efficiency (EE) of 85.13%, and zero-order in vitro release of TC for 30 days, with around 95% of the drug released at this time. Formulation NP-TC3, prepared with 10 mg of TC and 50 mg of PLGA 502, exhibited mean EE of 56.69%, particle size of 182 nm, and controlled the release of TC for 8 days. Daily i.p. (intraperitoneal) doses of rotenone (RT, 2 mg/kg) were given to Wistar rats to induce neurodegeneration. Once established, animals received TC in saline (3 mg/kg/day) or encapsulated within formulations MP-TC4 (amount of MPs equivalent to 3 mg/kg/day TC every 14 days) and NP-TC3 (amount of NPs equivalent to 3 mg/kg/day TC every 3 days). Brain analyses of Nissl-staining, GFAP (glial fibrillary acidic protein), and TH (tyrosine hydroxylase) immunohistochemistry as well as behavioral testing (catalepsy, akinesia, swim test) showed that the best formulation was NP-TC3, which was able to revert PD-like symptoms of neurodegeneration in the animal model assayed.