Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
How to effectively plug the multi-scale fractured water channeling has always been the key to achieving efficient water flooding of fractured low-permeability oil reservoirs. In this paper, a new type of supramolecular–polymer composite gel is developed, which is suitable for plugging multi-scale fractured water channeling. The supramolecular–polymer composite gel is composed of a polymer (such as polyacrylamide), cross-linking agent (such as polyethyleneimine), supramolecular gel factor (such as cyclodextrin) and polarity regulator (such as ethyl alcohol). The mass fraction of polyacrylamide, polyethyleneimine, cyclodextrin and ethyl alcohol are 0.15%, 0.2%, 1% and 0.2%, respectively. At the initial state, the viscosity of the composite gelant system is less than 20 mPa·s. It has good injection performance in micro-scale fractures and can enter the deep part of a fractured reservoir. At 40 °C, the composite gelant system can form a gel with a double network structure after gelation. One of the networks is formed by the covalent interaction between polyacrylamide and polyethyleneimine, the other network is formed by the self-assembly of cyclodextrins under the action of the ethyl alcohol. The comprehensive performance of the composite gel is greatly improved. The strength of the composite gel is >5 × 104 mPa·s, and it has good plugging strength in large-scale fractures. The composite gel can be used as a conformance control agent for fractured low-permeability oilfields.
How to effectively plug the multi-scale fractured water channeling has always been the key to achieving efficient water flooding of fractured low-permeability oil reservoirs. In this paper, a new type of supramolecular–polymer composite gel is developed, which is suitable for plugging multi-scale fractured water channeling. The supramolecular–polymer composite gel is composed of a polymer (such as polyacrylamide), cross-linking agent (such as polyethyleneimine), supramolecular gel factor (such as cyclodextrin) and polarity regulator (such as ethyl alcohol). The mass fraction of polyacrylamide, polyethyleneimine, cyclodextrin and ethyl alcohol are 0.15%, 0.2%, 1% and 0.2%, respectively. At the initial state, the viscosity of the composite gelant system is less than 20 mPa·s. It has good injection performance in micro-scale fractures and can enter the deep part of a fractured reservoir. At 40 °C, the composite gelant system can form a gel with a double network structure after gelation. One of the networks is formed by the covalent interaction between polyacrylamide and polyethyleneimine, the other network is formed by the self-assembly of cyclodextrins under the action of the ethyl alcohol. The comprehensive performance of the composite gel is greatly improved. The strength of the composite gel is >5 × 104 mPa·s, and it has good plugging strength in large-scale fractures. The composite gel can be used as a conformance control agent for fractured low-permeability oilfields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.