Rice husk, a byproduct of rice production, poses significant environmental challenges due to disposal issues, while the emission of volatile organic compounds into the atmosphere further exacerbates these concerns. This study addresses both problems by exploring the potential of texturally enhanced SiO2, derived from Uruguayan rice husk, as a catalytic support for manganese oxides in the combustion of volatile organic compounds. SiO2 was synthesized from rice husk ash using a sustainable, acid-free pretreatment method, yielding a notably high silica purity of 96.5%—a level comparable to or exceeding previously reported values, highlighting the high silica quality inherent in Uruguayan rice husk. The catalytic activity was evaluated using acetone as a model volatile organic compound, achieving up to 90% conversion with 30 wt.% manganese oxide at 300 °C, with CO2 as the primary product. Furthermore, a 24 h stability test demonstrated consistent performance, maintaining a conversion rate of around 95.6 ± 2.5%. These findings suggest that high-purity SiO2 derived from Uruguayan rice husk, with its sustainability benefits, offers an effective solution for acetone removal when supporting an active phase such as manganese oxides, addressing both rice husk disposal and volatile organic compound emissions.