Photocatalysis is seen as a viable alternative to treating water pollution, due to its flexibility, low cost, and ability to use visible light which is a plentiful and free energy source. Hence, determining the topics of interest and widening collaboration networks will go a long way in improving research in this field. In this study, we aimed to analyze the global research trends on the usage of photocatalysis for wastewater treatment using bibliometric analysis, centered on the outputs of publications, co-authorships, countries of affiliation, and author’s keyword co-occurrences. Bibliometric analysis is a review method that is well-known and more conversant to Social Science. Employing it in Physical Science, which is rarely seen, will provide an avenue and yet another method of determining common research topics as well as the potential opportunities and future research in the field. A potential hybrid review paper of great importance to future research in the area will be produced. A total of 1373 articles published within 27 years between 1993 and 2020 were extracted from the Scopus database. In the beginning, less attention was given to the said topic, because after the oldest article was published in 1993, there was no record of other publications until after 5 years (1998). However, from 2002 there was a growing interest in research in that field, with a cumulative increase every year to date, except for a few years with fewer publications. Meanwhile, the number of publications has risen significantly from 2017 to 2020, with an increase of more than 70 publications every year; this is expected to increase rapidly in the coming years. Recently researchers are focusing on developing efficient photocatalysts for contaminants of emerging concern, like pharmaceutical and refinery wastewater, however, the usage of conducting polymers to produce nanocomposite which was found to be very effective is still lagged in wastewater treatment, as such it will be a good area of future research on effective photocatalysts for wastewater treatment.
Supplementary Information
The online version contains supplementary material available at 10.1007/s40899-023-00868-5.