DOPO and boron nitride (BN) fillers with different particle sizes and several loadings were employed to improve the properties of cyanate ester (CE) resin. The effects of BN content and particle size on the thermal conductivity of the BN‐DOPO/CE ternary composites were discussed. The influence of enhancing the thermal conductivity of the ternary composites on their flame retardancy was studied. The consequences showed that increasing the thermal conductivity of BN‐DOPO/CE composites had an active impact on their flame retardancy. Approving flame retardancy of the ternary composites was certified by the high limiting oxygen index (LOI), UL‐94 rating of V‐0, and low heat release rate (HRR) and total heat release (THR). For instance, in contrast with pure CE matrix, peak of HRR (pk‐HRR), average of HRR (av‐HRR), THR, and average of effective heat of combustion (av‐EHC) of CEP/BN0.5 μm/10 composite were decreased by 51.7%, 33.8%, 18.7%, and 18.9%, respectively. Thermal gravimetry analysis (TGA) showed that the addition of BN fillers improves the thermal stability of the composites. Moreover, the ternary composites possess good dielectric properties. Their dielectric constants (ε) are less than 3, and dielectric loss tangent (tgδ) values are lower than neat CE resin.