The depletion of conventional materials and their adverse environmental impacts have prompted a shift toward sustainable alternatives in composite materials engineering. In pursuit of this objective, this study investigated the mechanical properties of polypropylene matrix composites reinforced with Cordenka, an artificial cellulose fiber, and compared them to those reinforced with ramie, a natural cellulose fiber. Continuous strand composites were developed using the Multi-Pin-assisted Resin Infiltration (M-PaRI) process. The strands were subsequently sectioned into 15 mm lengths and injection-molded into dumbbell and strip specimens for mechanical characterization. The results showed that 20 wt% Cordenka/PP composites exhibited a tensile strength of 68.7 MPa, 2.04 times higher than neat PP and 1.66 times greater than the 20 wt% ramie/PP composites. Impact testing further demonstrated that Cordenka/PP composites absorbed 2 to 2.5 times more impact energy than ramie/PP composites, regardless of the presence of notches. Fiber length analysis indicated that Cordenka fibers maintained their length beyond the critical fiber length, allowing for efficient stress transfer and acting as a more effective reinforcement compared to ramie fibers, which were below this threshold. Consequently, the Cordenka/PP composites exhibited significantly enhanced mechanical performance. Scanning electron microscopy (SEM) analysis revealed fewer fiber pullouts in ramie-reinforced composites, suggesting superior interfacial adhesion to the PP matrix, although it did not translate to higher mechanical properties. These findings underscore the potential of Cordenka as a sustainable alternative to synthetic, non-biodegradable fibers in PP composites, providing improved mechanical properties and promising prospects for advanced composite applications.