Porous Si3N4‐Si2N2O‐BN ceramic was fabricated at 1750°C using Si3N4, BN, and (NH4)2HPO4 as starting materials. During the sintering process, oxygen from the decomposed products of (NH4)2HPO4 would bond Si and N in the liquid phase to form Si2N2O. The microstructure and properties of the porous ceramics were investigated. With the (NH4)2HPO4 content varied from 10 to 50 vol.%, porosity of the porous Si3N4‐Si2N2O‐BN ceramic increased from 43.5% to 51%. The microstructure, mechanical, and dielectric properties was well controlled by adjusting (NH4)2HPO4 contents. The present technique offers a more simple way of synthesizing porous Si3N4‐Si2N2O‐BN ceramics.