The heating stage in thermoforming of amorphous and semi‐crystalline polymers was analyzed for constant heat flux conditions using an energy balance model; candidate polymers were high impact polystyrene and isotactic polypropylene. Using an analytical solution, temperature differences as large as 100°C were predicted to arise between the surface and the interior of the sheet being thermoformed for conditions chosen in this work, and these can limit the heat flux being used. A Matlab program was used to compute temperature and crystallinity profiles for crystal melting. Melting took almost as much time as required to heat the surface of the film to the crystal melting point. High thermal conductivity additives, such as calcium carbonate and graphene, can provide temperature uniformity, and the additive uniformity can be verified using thermogravimetric analysis. The ability of these additives to provide temperature uniformity and to reduce energy consumption and heating time is determined in a quantitative manner. Both additives improve heat transfer, and, at the same added volume fraction, graphene is more effective. However, calcium carbonate has a lower cost. The role of density, specific heat, thermal conductivity, and amount of the polymers and additives in influencing temperature and crystallinity profiles was explored, and methods of carrying out thermoforming in an energy efficient manner are proposed.