Poly(vinylidene fluoride -tryfluorethylene) [P(VDF-TrFE)] copolymers were mixed with zirconia nanoparticles. The investigation was conducted with the intention to produce nanocompounds with potential to be used as protective patient shielding in radiological procedures. Polymer based nanocomposites with 1, 2, 3, 5 and 10 wt% of ZrO 2 nanoparticles were prepared using sol-gel route with zirconium butoxide as the precursor for zirconium oxide nanoclusters. UV-Vis and FTIR spectrometry and differential scanning calorimetry (DSC) were used to characterize the composite samples. We observed a more homogeneous distribution of ZrO 2 nanoparticles encapsulated by methyl methacrylate (MMA) into the polymeric matrix, when compared to composites made without the use of surface modifiers from methacrylate group. Apparently, this property is related to the absence of the strong MMA absorption band at 1745 cm -1 , attributed to C=O bond, in the P(VDF-TrFE)/ZrO 2 -MMA nanocomposites. The radiation damage due to high dose exposuring was performed for gamma doses ranging from 100 kGy to 1,000 kGy. The radiation shielding characterization conducted using x-rays with effective energy of 40 keV has demonstrated that composites with 10% of ZrO 2, and only 1.0 mm thick, can attenuate 60% of the x-rays beam.