The main objective of this research was to study the feasibility of incorporating organosolv semi-chemical triticale fibers as the reinforcing element in recycled high density polyethylene (HDPE). In the first step, triticale fibers were characterized in terms of chemical composition and compared with other biomass species (wheat, rye, softwood, and hardwood). Then, organosolv semi-chemical triticale fibers were prepared by the ethanolamine process. These fibers were characterized in terms of its yield, kappa number, fiber length/diameter ratio, fines, and viscosity; the obtained results were compared with those of eucalypt kraft pulp. In the second step, the prepared fibers were examined as a reinforcing element for recycled HDPE composites. Coupled and noncoupled HDPE composites were prepared and tested for tensile properties. Results showed that with the addition of the coupling agent maleated polyethylene (MAPE), the tensile properties of composites were significantly improved, as compared to non-coupled samples and the plain matrix. Furthermore, the influence of MAPE on the interfacial shear strength (IFSS) was studied. The contributions of both fibers and matrix to the composite strength were also studied. This was possible by the use of a numerical iterative method based on the Bowyer-Bader and Kelly-Tyson equations.