This paper focuses on the selection and application of scale inhibitor by studying the problem of pipeline scaling in geothermal well development. Adding scale inhibitor can effectively reduce the treatment cost and achieve a good scale resistance effect, but the commonly used polyaspartic acid scale inhibitor has problems such as poor scale inhibition effect and large use limitations. Therefore, a new modified polyaspartic acid scale inhibitor (His-Tyr-SA-PASP) was prepared using polysuccinimide (PSI) as the raw material and histidine (His), tyrosine (Tyr), and sulfonic acid (SA) as the modification reagent. When the dosage of His-Tyr-SA-PASP was 8 mg/L, the scale inhibition rate of CaCO3 was 94.40%. In addition, the scale inhibition effect of His-Tyr-SA-PASP on CaCO3 was better than that of PASP. At the same time, under the condition of a static experiment at 75 °C, according to the ion concentration of water samples in different scale zones, this paper also identified the ratio of four composite scale inhibitors. When the dosage of compound scale inhibitor was 100 mg/L, Sodium of Polyaspartic Acid–Diethylene Triamine Penta (Methylene Phosphonic Acid)–2-Phosphonobutane-1,2,4-Tricarboxylic Acid–Amino Trimethylene Phosphonic Acid–Copolymer of Maleic and Acrylic Acid = (10:10:5:1:9), (15:10:5:2.5:2.5), (12.5:5:10:1:6.5), and (15:5:10:4:1) and the scale inhibition rate was more than 95%. Under the condition of a dynamic experiment, the optimized composite scale inhibitor still showed a scale inhibition rate of more than 90%. It provides a useful reference for the practical application of water treatment in geothermal wells and has the prospect of industrial application.