Taking the spirophosphorus compound 3, 9-dichloro-2,4,8, 10-tetraoxo-3,9-diphosphaspiro-[5,5]-undecane-3,9-dioxide as one of the reactive monomers, a family of aromatic spirophosphates was synthesized using dihydric phenols, viz., resorcinol, hydroquinone, 4,4 0 -dihydroxydiphenyl, bisphenol-A and fluorene dicarbinol as the other monomers. The polymers were synthesized employing melt condensation technique under vacuum and characterized using FT-IR, 1 H-, 13 C-and 31 P-NMR spectroscopic methods. The number average molecular weight of the polymers was determined using vapour phase osmometry. Thermal properties of the polymers were studied using differential scanning calorimetry and thermogravimetry techniques. These studies indicated that the polymers containing spirophosphato moiety undergo eruptive degradations in the temperature region 310 -380 C leading to the formation of dense carbonaceous foam. The present study confirmed the spirophosphate structure as an essential requirement to show intumescence.