Hydrogels have been widely applied to the water shutoff in oilfields due to their excellent three-dimensional network and thermal and physicochemical stability, and it is still a huge challenge to develop new hydrogels with simple preparation, low cost, and high mechanical performance that can meet the requirements of practical applications. Herein, we devised a simple and universal manufacturing method for regulating the hydrogen bonds between poly(vinyl alcohol) (PVA) and cellulose nanofibers (CNF) via the water-diffusion action, thus fabricating a physically tough PVA−CNF hydrogel for the in situ water shutoff. This method allowed the polymer chains to strengthen the molecular interactions between polymers upon replacing with water (a poor solvent) to regulate the cross-linking structure, characterizing by the nanocrystallinity domains and fibrillar segments, which also accounted for the thermal stability, extraordinary elasticity, high stretchability, and toughness of PVA−CNF hydrogel. Further, the obtained PVA−CNF hydrogel exhibited superb plugging performance, that is, the breakthrough pressure gradient could reach 71.56 MPa•m −1 , surpassing all currently reported gelling water shutoff agents. This water-induced in situ hydrogelation made it well suited as a water shutoff agent in oilfields and may provide a promising strategy to fabricate mechanically robust smart materials for the water shutoff projects with low cost, simple processing, and high efficiency.