Biofilms are a severe problem for public health because of the contributing recurrence of infections. Therefore, combating biofilms is a critical issue. In our study, we loaded zinc oxide (ZnO), zinc oxide borax (ZnOBorax), zinc copper oxide (ZnCuO2) nanoparticles and borax into bacterial cellulose (BC) to impart anti-biofilm and wound healing activity. The prepared BC loaded with nanoparticles (BC–NPs) was analysed via scanning electron microscopy. The nanoparticles’ geometric structure and placement in BC fibres were observed. We evaluated the biofilm inhibition and biofilm degradation activities of the BC–NPs against some pathogens via a crystal violet (CV) assay and XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2 H-tetrazolium-5-carboxanilide) reduction assay. The effects of BC–NPs on cell proliferation and wound-healing ability were analysed in L929 cell line. BC–NPs exhibited better biofilm degradation activity than biofilm inhibition activity. According to the results of the CV assay, BC–ZnONPs, BC–Borax and BC–ZnOBoraxNPs inhibited 65.53%, 71.74% and 66.60% of biofilm formation of Staphylococcus aureus, respectively. BC–ZnCuO2NPs showed the most degradation activity on Pseudomonas aeruginosa and Listeria innocua biofilms. The XTT reduction assay results indicated a considerable reduction in the metabolic activity of the biofilms. Moreover, compared to the control group, BC loaded with borax and ZnO nanoparticle promoted cell migration without cytotoxicity.