The purpose of this study was to determine the feasibility of applying accelerated in vitro release testing to correlate or predict long-term in vitro release of leuprolide poly(lactideco-glycolide) microspheres. Peptide release was studied using a dialysis technique at 37°C and at elevated temperatures (50°C-60°C) in 0.1M phosphate buffered saline (PBS) pH 7.4 and 0.1M acetate buffer pH 4.0. The data were analyzed using a modification of the Weibull equation. Peptide release was temperature dependent and complete within 30 days at 37°C and 3 to 5 days at the elevated temperatures. In vitro release profiles at the elevated temperatures correlated well with release at 37°C. The shapes of the release profiles at all temperatures were similar. Using the modified Weibull equation, an increase in temperature was characterized by an increase in the model parameter, α, a scaling factor for the apparent rate constant. Complete release at 37°C was shortened from 30 days to 5 days at 50°C, 3.5 days at 55°C, 2.25 days at 60°C in PBS pH 7.4, and 3 days at 50°C in acetate buffer pH 4.0. Values for the model parameter β indicated that the shape of the release profiles at 55°C in PBS pH 7.4 (2.740) and 50°C in 0.1M acetate buffer pH 4.0 (2.711) were similar to that at 37°C (2.677). The E a for hydration and erosion were determined to be 42.3 and 19.4 kcal/mol, respectively. Polymer degradation was also temperature dependent and had an E a of 31.6 kcal/mol. Short-term in vitro release studies offer the possibility of correlation with long-term release, thereby reducing the time and expense associated with longterm studies. Accelerated release methodology could be useful in the prediction of long-term release from extended release microsphere dosage forms and may serve as a quality control tool for the release of clinical or commercial batches.