An advanced strategy was developed for the synthesis of molecular sieve-supported Pd catalysts. In this method, reductant containing C=C was in-situ prepared and pre-dispersed in the pore of the zeolites. The C=C group in the reductant can reduce the Pd2+ to Pd0 efficiently, leading to the formation of small and uniform Pd nanoparticles (~2 nm). The physical and chemical properties of the catalyst were characterized by XRD, TEM, XPS (ICP-OES), N2 isothermal adsorption-desorption, and H2-TPR. These catalysts showed high catalytic performance for the hydrogenation of nitrobenzene to aniline. All the TOFs for 1.5 Pd/Y, 1.5 Pd/ZSM-5, and 1.5 Pd/MOR with 1.5 wt% Pd loading are higher than 1000 h−1 at 30 °C and 0.1 MPa H2. Meanwhile, kinetic analysis for 2.0 Pd/Y was carried out, and an apparent activation energy of 28.88 kJ mol−1 was obtained, which is lower than most of the reported values in the literature. Furthermore, these catalysts were stable and recyclable.