Halide perovskite quantum dots (QDs), primarily regarded as optoelectronic materials for LED and photovoltaic devices, have not been applied for photochemical conversion (e.g., water splitting or CO reduction) applications because of their insufficient stability in the presence of moisture or polar solvents. Herein, we report the use of CsPbBr QDs as novel photocatalysts to convert CO into solar fuels in nonaqueous media. Under AM 1.5G simulated illumination, the CsPbBr QDs steadily generated and injected electrons into CO, catalyzing CO reduction at a rate of 23.7 μmol/g h with a selectivity over 99.3%. Additionally, through the construction of a CsPbBr QD/graphene oxide (CsPbBr QD/GO) composite, the rate of electron consumption increased 25.5% because of improved electron extraction and transport. This study is anticipated to provide new opportunities to utilize halide perovskite QD materials in photocatalytic applications.