An experimental ultraviolet (UV) polymerizable hybrid organic-inorganic protective coating, mainly intended for the surface protection of porous calcareous stone substrates, has been recently proposed and patented. The hybrid product evidenced an extraordinary hydrophobicity character, able to guarantee a high protection of the stone against water actions, as well as a high traspirability. Furthermore, it is able to equal the performance of commercial available coatings, with the important adjunctive advantage to be free solvent. The application of this product involves the use of a "dual curing" treatment, necessary to harden the coating applied on the substrate, representing this latter a technological limit. The dual curing treatment consists of 6 hr of exposure to a UV-lamp plus 1 hr at 140°C in oven. In order to avoid this procedure, not easy to realize in situ, two different modifications of the composition of the hybrid product are proposed in this paper. The first one allows the photopolymerization of the hybrid coating only by sunlight exposure. The second one, even though requiring a UV exposure to photo-polymerize the coating, does not need the subsequent thermal treatment at 140°C. Several experimental characterizations were performed on the newly developed hybrid products, in order to select an optimal composition for the formulations. The selected innovative products were, finally, applied on a calcareous stone substrate, typical of Apulia Region (Pietra Leccese, PL). Both coatings exhibit excellent water-repellent action and a slight variation of the natural stone color.