One of the biggest challenges facing public health in the modern era is the management of cancer, a global health issue. Breast cancer (BC) is the most common malignancy among women worldwide. Among the most popular cancer treatment modalities are radiation, chemotherapy, and surgery. Chemotherapy, however, is regarded as the primary treatment option for cancer that has progressed to the final and metastatic stages. However, because of things like toxicity to healthy cells, poor drug absorption, trouble getting drugs to target tumor sites, and low therapeutic efficacy, traditional chemotherapy approaches are frequently insufficient. Nanotechnology offers the potential to overcome some of these limitations by creating new materials with unique properties through electrospinning. A straightforward and reasonably priced technique for creating biomaterials that can replicate the topography and structure of the cellular matrix is electrospinning. These materials have a large surface area, can be mechanically controlled, and have a level of fibers that can be adjusted from micrometers to nanometers. This review article emphasizes the potential of electrospun scaffolds for the treatment of BC while also offering a basic understanding of the procedure and nanostructured fibrous materials. This article reviews the most recent emerging electrospinning techniques in BC therapy. First, it briefly introduces the progress made in electrospinning in BC research over the past few years. Next, it investigates electrospinning by summarizing the techniques and materials used in the process. In addition, it demonstrates how crucial electrospinning three‐dimensional (3D) models are for the diagnosis and treatment of BC. This article also clarifies numerous electrospinning uses in several fields, such as cell culture, drug delivery, drug loading, and gene therapy. The final section discusses the advantages, limitations, and challenges electrospinning is willing to encounter in BC research.