For the industrial production of rubber, one of the key ingredients is a processing aid. It not only facilitates the processability but also tunes the final properties of the resultant rubber. In general, for a polar rubber like acrylonitrile-butadiene rubber (NBR), the processing aids earning the most attention are synthesized from petroleum, such as dioctyl phthalate (DOP). However, due to their toxicity, many rubber chemists have tried to find alternative chemicals that are environmentally friendly and derived from a renewable resource. In this research, we investigated the effects of the soybean oil fatty acid (SBOFA), synthesized in house via hydrolysis of SBO, on the properties of NBR in comparison with DOP. Initially, it was found that the addition of SBOFA improved the flowability of the NBR compound, as indicated by the progressive decrease in the Mooney viscosity with increasing levels of SBOFA. The results from various techniques indicated that the crosslink density of the NBR vulcanizates passed through the maximum at the SBOFA loading of 4 phr. Upon loading SBOFA up to 4 phr, there was no significant deterioration in the mechanical strength of the SBOFA-plasticized NBR vulcanizates. Typically, the presence of SBOFA at 4 phr enhanced the thermal resistance of the NBR vulcanizate by shifting the thermal decomposition to a higher temperature. At a given loading, it was found that the SBOFA-plasticized NBR vulcanizate showed a comparable plasticizing efficiency and mechanical strength with the DOP-plasticized one. The result from this study shows that SBOFA is a good alternative sustainable eco-friendly processing aid to use for NBR.