Coarse-grained molecular dynamics (CGMD) simulations were employed to investigate the effects of phospholipids on the aggregation of hydrophilic, modified carbon-nanoparticle fillers in cis-polyisoprene (cis-PI) composites. The MARTINI force field was applied to model dipalmitoylphosphatidylcholine (DPPC) lipids and hydrophilic modified fullerenes (HMFs). The simulations of DPPC in cis-PI composites show that the DPPC lipids self-assemble to form a reverse micelle in a rubber matrix. Moreover, HMF molecules readily aggregate into a cluster, in agreement with the previous studies. Interestingly, the mixture of the DPPC and HMF in the rubber matrix shows a cluster of HMF is encapsulated inside the DPPC reverse micelle. The HMF encapsulated micelles disperse well in the rubber matrix, and their sizes are dependent on the lipid concentration. Mechanical and thermal properties of the composites were analyzed by calculating the diffusion coefficients (D), bulk modulus (κ), and glass transition temperatures (Tg). The results suggest that DPPC acts as a plasticizer and enhances the flexibility of the HMF-DPPC rubber composites. These findings provide valuable insights into the design and process of high-performance rubber composites, offering improved mechanical and thermal properties for various applications.