We report here non‐enzymatic electrochemical biosensing of H2O2 using a highly stable, metal‐free, tyramine functionalized graphene (T‐GO) based electrocatalytic system. The surface functionalization of tyramine on graphene was carried out chemically. The obtained sheets were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) as well as X‐ray photoelectron (XP), Raman, FT‐IR and UV‐visible spectroscopy. More significantly, the combined results from morphological and structural studies show the formation of a few layers of graphene with effective large‐scale functionalization by tyramine. As a metal‐free electrocatalyst, the as‐synthesized T‐GO shown good electrocatalytic activity towards reduction of H2O2 with a sensitivity of 0.105 mM/cm2 confirmed by combined results from cyclic voltammetric (CV) and linear sweep voltammetric (LSV), and amperometric (i–t) measurements. The lower onset potential (−0.23 mV vs SCE), lower detection limit, wider concentration range (10 mM to 60 mM) with higher electrochemical current and potential stability demonstrated the potential of our non‐enzymatic and cost‐effective T‐GO based electrocatalytic system towards reduction of hydrogen peroxide.