Nano-silver paste, as an important basic material for manufacturing thick film components, ultra-fine circuits, and transparent conductive films, has been widely used in various fields of electronics. Here, aiming at the shortcomings of the existing nano-silver paste in printing technology and the problem that the existing printing technology cannot achieve the printing of high viscosity, high solid content nano-silver paste, a nano-silver paste suitable for electric-field-driven (EFD) micro-scale 3D printing is developed. The result shows that there is no oxidation and settlement agglomeration of nano-silver paste with a storage time of over six months, which indicates that it has good dispersibility. We focus on the printing process parameters, sintering process, and electrical conductivity of nano-silver paste. The properties of the nano-silver paste were analyzed and the feasibility and practicability of the prepared nano-silver paste in EFD micro-scale 3D printing technology were verified. The experiment results indicate that the printed silver mesh which can act as transparent electrodes shows high conductivity (1.48 Ω/sq) and excellent transmittance (82.88%). The practical viability of the prepared nano-silver paste is successfully demonstrated with a deicing test. Additionally, the experimental results show that the prepared silver mesh has excellent heating properties, which can be used as transparent heaters.