Porous TiO2 nanowire microspheres with greatly decreasing agglomeration were successfully prepared by spray drying of hydrothermal reaction suspension, followed by calcination at 350°C. The as-obtained nanowire microspheres with TiO2-B structure reach an initial discharge capacity 210 mAh g(-1) with an irreversible capacity 25 mAh g(-1) at a current density of 20 mA g(-1). For the 450°C-calcined one with anatase TiO2 crystal structure, the initial discharge capacity is 245 mAh g(-1) but with a much higher irreversible capacity of 80 mAh g(-1). The hierarchical porous structure in the 350°C-calcined TiO2 nanowire microspheres collapsed at 450°C, annihilating the main benefit of nanostructuring.