Two H‐bonded acceptor (H‐acceptor) homopolymers 14 and 17 were successfully prepared by polymerization of fluorescent pyridyl monomers PBT and PBOT (12 and 13), which were synthesized via Sonogashira coupling and Wittig‐Horner reactions. To increase the glass transition temperatures as well as reduce the π‐π stacking of the photoluminescent (PL) H‐acceptor copolymers and their H‐bonded polymer complexes, fluorescent monomers 12 and 13 were copolymerized with N‐vinylcarbazole monomer CAZ (23) to produce H‐acceptor copolymers 15–16 and 18–19. Supramolecular side‐chain and crosslinking polymers (i.e., H‐bonded polymer complexes) obtained by complexation of light‐emitting H‐acceptor polymers 14–19 with various proton donor (H‐donor) acids 20–22 were further characterized by DSC, POM, FTIR, XRD, and PL measurements. The mesomorphic properties can be tuned from the nematic phase in H‐acceptor homopolymers (14 and 17) to the tilted smectic C phase in their H‐bonded polymer complexes (14/20–21 and 17/20–22) by the introduction of H‐donor acids (20–22). Moreover, the PL properties of light‐emitting H‐acceptor polymers can be adjusted not only by the central structures of the conjugated pyridyl cores but also by their surrounding nonfluorescent H‐donor acids. In general, redder shifts of PL emissions in H‐bonded polymer complexes occurred when the light‐emitting H‐acceptor polymers were complexed with H‐donors having smaller pKa values. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2734–2753, 2009