Poly(3-methacrylamido propyl trimethyl ammonium chloride) (PMAPTAC) is a typical cationic water-soluble polyelectrolyte, which has been widely used in petroleum, papermaking, daily cosmetics and other fields in the form of an aqueous solution. However, the acid–base and thermal stability of PMAPTAC in aqueous solution have not been reported yet, which hinders its further application in high-temperature and acid–base environments. To address these deficiencies, the effects of temperature and pH of PMAPTAC with different intrinsic viscosities on its hydrolysis stability were investigated qualitatively and quantitatively, and the hydrolysis mechanism was studied. Firstly, the qualitative analysis showed that the apparent viscosity of the PMAPTAC solution decreased with hydrolysis time at different temperatures and pH. The higher the temperature and the lower the pH, the greater the viscosity loss of PMAPTAC. The quantitative analysis showed that the hydrolysis rate of the PMAPTAC sample solution increased with the increase in temperature and pH. In addition, the intrinsic viscosity of PMAPTAC samples had little effect on the hydrolytic stability of PMAPTAC. Secondly, by analyzing the viscosity curves at different pH and temperatures by Arrhenius analysis, the Arrhenius equations were found to be 1/τ = 200.34e^((−25.04)/RT), 1/τ = 9127.07e^((−38.90)/RT) and 1/τ = 4683.03e^((−39.89)/RT) for pH 3, pH 7 and pH 11, respectively. Thirdly, the hydrolysis rate of PDMC was the fastest under alkaline conditions. In addition, compared with PDMC, PMAPTAC had better hydrolysis stability under the same conditions. Finally, the mechanism of the hydrolyzed polymer was studied by FTIR and 13CNMR, which showed that the carbonyl group of PMAPTAC was hydrolyzed into a carboxyl group, and the small molecule (3-aminopropyl) trimethylammonium chloride was generated, while the ester group of PDMC was hydrolyzed into a carboxyl group, and choline chloride was released. The above results can provide a theoretical basis for the application of PMAPTAC in some high-temperature and acid–base environments.