In this paper, the short-range ordering structures of Ga melts has been investigated using the Wulff cluster model (WCM). The structures with a Wulff shape outside and crystal symmetry inside have been derived as the equivalent system to describe the short-range-order (SRO) distribution of the Ga melts. It is observed that the simulated HTXRD patterns of the Ga WCM are in excellent agreement with the experimental data at various temperatures (523 K, 623 K, and 723 K). This agreement includes first and second peak positions, widths, and relative intensities of patterns, particularly at temperatures significantly above the melting point. A minor deviation in the second peak position has been observed at 523 K, attributed to the starting of the pre-nucleation stage. These findings demonstrate that the WCM can effectively describe the SRO structure in melt systems exhibiting a certain extent of covalency.