Heparin, a sulfated polysaccharide belonging to the glycosaminoglycan family, has been widely used as an anticoagulant drug for decades and remains the most commonly used parenteral anticoagulant in adults and children. However, heparin has important clinical limitations and is derived from animal sources which pose significant safety and supply problems. The ever growing shortage of the raw material for heparin manufacturing may become a very significant issue in the future. These global limitations have prompted much research, especially following the recent well-publicized contamination scandal, into the development of alternative anticoagulants derived from non-animal and/or totally synthetic sources that mimic the structural features and properties of heparin. Such compounds, termed heparin mimetics, are also needed as anticoagulant materials for use in biomedical applications (e.g., stents, grafts, implants etc.). This review encompasses the development of heparin mimetics of various structural classes, including synthetic polymers and non-carbohydrate small molecules as well as sulfated oligo- and polysaccharides, and fondaparinux derivatives and conjugates, with a focus on developments in the past 10 years.