In the present study, a new polypropylene (PP)/multi-walled carbon nanotube (MWCNT) masterbatch is synthesized by in situ polymerization and compared with a masterbatch obtained by melt mixing. Both masterbatches are used for the realization of PP/MWCNT nanocomposites by mixing with a commercial PP in a laboratory extruder. It is shown that the use of masterbatch synthesized in situ allows providing additional enhanced thermal stability and mechanical properties. Samples are characterized according to their thermo dynamicmechanical properties, thermal stability, and degree of crystallinity, as well as by scanning electron microscopy. DMA analysis shows that there is a sharp increase in both storage and loss moduli of materials even with very low CNT content, in comparison with the neat PP. By means of thermogravimetric analysis, it is found that the thermal stability of nanocomposites is also increased. Furthermore, the degree of crystallinity of the materials containing CNTs is increased to higher value than that of neat PP, suggesting that the carbon nanotubes act as nucleating agent. A sharper increase of X c is observed in the composites with low CNT content prepared in the method using meltmasterbatch, suggesting that there are more agglomerations of CNTs in this material.