Extinction learning is suggested to be a central mechanism during exposure-based cognitive behavioral psychotherapy. A positive association between the patients' pretreatment extinction learning performance and treatment outcome would corroborate the hypothesis. Indeed, there is first correlational evidence between reduced extinction learning and therapy efficacy. However, the results of these association studies may be hampered by extinction-training protocols that do not match treatment procedures. Therefore, we developed an extinction-training protocol highly tailored to the procedure of exposure therapy and tested it in two samples of 46 subjects in total. By using instructed fear acquisition training, including a consolidation period overnight, we wanted to ensure that the conditioned fear response was well established prior to extinction training, which is the case in patients with anxiety disorders prior to treatment. Moreover, the extinction learning process was analyzed on multiple response levels, comprising unconditioned stimulus (US) expectancy ratings, autonomic responses, defensive brain stem reflexes, and neural activation using functional magnetic resonance imaging. Using this protocol, we found robust fear conditioning and slow-speed extinction learning. We also observed within-group heterogeneity in extinction learning, albeit a stable fear response at the beginning of the extinction training. Finally, we found discordance between different response systems, suggesting that multiple processes are involved in extinction learning. The paradigm presented here might help to ameliorate the association between extinction learning performance assessed in the laboratory and therapy outcomes and thus facilitate translational science in anxiety disorders.