Postpartum diseases should be predicted to prevent productivity loss before calving especially in organic dairy farms. This study was aimed to investigate the incidence of postpartum metabolic diseases in an organic dairy farm in Korea, to confirm the association between diseases and prepartum blood biochemical parameters, and to evaluate the accuracy of these parameters with a receiver operating characteristic (ROC) analysis for identifying vulnerable cows. Data were collected from 58 Holstein cows (16 primiparous and 42 multiparous) having calved for 2 years on an organic farm. During a transition period from 4 weeks prepartum to 4 weeks postpartum, blood biochemistry was performed through blood collection every 2 weeks with a physical examination. Thirty-one (53.4%) cows (9 primiparous and 22 multiparous) were diagnosed with at least one postpartum disease. Each incidence was 27.6% for subclinical ketosis, 22.4% for subclinical hypocalcemia, 12.1% for retained placenta, 10.3% for displaced abomasum and 5.2% for clinical ketosis. Between at least one disease and no disease, there were significant differences in the prepartum levels of parameters like body condition score (BCS), non-esterified fatty acid (NEFA), total bilirubin (T-bil), direct bilirubin (D-bil) and NEFA to total cholesterol (T-chol) ratio (p < 0.05). The ROC analysis of each of these prepartum parameters had the area under the curve (AUC) <0.7. However, the ROC analysis with logistic regression including all these parameters revealed a higher AUC (0.769), sensitivity (71.0%), and specificity (77.8%). The ROC analysis with logistic regression including the prepartum BCS, NEFA, T-bil, D-bil, and NEFA to T-chol ratio can be used to identify cows that are vulnerable to postpartum diseases with moderate accuracy.