Prescribed fire is widely applied in western US forests to limit future fire severity by reducing tree density, fuels, and excessive seedlings. Repeated prescribed burning attempts to simulate historical fire regimes in frequent-fire forests, yet there is limited long-term information regarding optimal burn season and frequency. In addition, burns are operationally feasible only in the spring and late fall, largely outside the historical wildfire season. This study quantifies the effect of seasonal reburns on woody surface fuels, forest floor fuels, and understory tree regeneration abundance in six previously thinned ponderosa pine (Pinus ponderosa Lawson & C. Lawson) stands in the southern Blue Mountain Ecoregion of Oregon, USA. Each stand consisted of an unburned control, and four season by reburn treatments: spring 5 yr, spring 15 yr, fall 5 yr, and fall 15 yr. We evaluated season and frequency of reburn for woody surface fuel (1 hr to 1000 hr), forest floor fuel (litter and duff, undifferentiated), and understory conifer seedling density (regeneration). Burning was initiated in the fall of 1997 and spring of 1998; we present results in this pa-RESUMEN