Purpose: To investigate the effect of quaternary amines on myocardial cells of a rat model of cardiac arrest, with respect to energy generation potential and oxygen free radicals.
Methods: Forty-five Sprague-Dawley (SD) rats were assigned to sham, model and quaternary amine groups (each with 15 rats). After their corresponding treatments, lectrocardiogram (ECG) monitoring of the rats in the three groups at various time periods was carried out. Serum levels of myocardial enzymes, thromboxane B2 (TXB2), prostacyclin I2 (PGI2), serum carbon monoxide (CO), and changes in endothelial carbon monoxide synthase (eNOS) and endothelin (ET), were determined.
Results: The levels of NO and eNOS were significantly reduced in model rats, relative to sham operation rats, while ET was significantly elevated in sham rats (p < 0.05). There were higher levels of NO and eNOS in the quaternary amine group than in model rats, but ET was higher in quaternary amine group than in model rats. Thromboxane B2 (TXB2) concentration was higher in model rats than in sham rats (p < 0.05). While PGI2 was markedly lower in quaternary group than in sham operation rats. TXB2 was lower in the quaternary amine group than in model rats, while PGI2 was significantly higher in quaternary amine group, relative to model rats (p < 0.05).
Conclusion: Quaternary amines exert anti-myocardial effects by regulating energy metabolism and oxygen free radicals in myocardial cells of congestive heart failure rats, and thus are potentially useful for the management of acute myocardial infarction.
Keywords: Quaternary amine; Acute myocardial infarction; Electrocardiogram; Serum myocardial enzymes; Myocardial cells