Although it has been established that oxidative stress mediates cytotoxicity by familial Alzheimer's disease (FAD)-linked mutants of presenilin (PS)1 and that pertussis toxin inhibits cytotoxicity by FAD-linked N141I-PS2, it has not been determined whether oxidative stress is involved in cytotoxicity by N141I-PS2 or which pertussis toxin-sensitive proteins mediate the cytotoxicity. Here we report that low expression of N141I-PS2 caused neuronal cell death, whereas low expression of wildtype PS2 did not. Cytotoxicities by low and high expression of N141I-PS2 occurred through dissimilar mechanisms: the former cytotoxicity was blocked by a cell-permeable caspase inhibitor, and the latter was not. Since both mechanisms were sensitive to a cell-permeable antioxidant, we examined potential sources of reactive oxygen species in each mechanism, and found that the caspase inhibitor-sensitive neurotoxicity by N141I-PS2 was likely through NADPH oxidase and the caspase inhibitor-resistant neurotoxicity by N141I-PS2 through xanthine oxidase. Pertussis toxin greatly suppressed both toxic mechanisms by N141I-PS2, and only G␣ o , a neuron-enriched pertussis toxin-sensitive G protein, was involved in both mechanisms. We therefore conclude that N141I-PS2 is capable of triggering multiple neurotoxic mechanisms, which can be inhibited by the combination of clinically usable inhibitors of NADPH oxidase and xanthine oxidase. This study thus provides a novel insight into the therapeutic intervention of PS2 mutant-associated FAD.Familial Alzheimer's disease (FAD) is caused by mutations in amyloid precursor protein (APP), presenilin (PS)1, and PS2 (Shastry and Giblin, 1999). However, how these mutant genes cause neural death, the central abnormality in Alzheimer's disease (AD), has been little understood. A clue is the finding that expression of FAD mutant APP and PS genes causes neural cell death in cultures