Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
No abstract
In this article, the authors present finite element analysis and approximation of Burgers’‐Fisher equation. Existence and uniqueness of weak solution is proved by Galerkin's finite element method for non‐smooth initial data. Next, a priori error estimates of semi‐discrete solution in L ∞ ( 0 , T ; L 2 ( Ω ) ) norm, are derived and the convergence of semi‐discrete solution is established. Then, fully discretization of the problem is done with the help of Euler's backward method. The nonlinearity is removed by lagging it to previous known level. The scheme is found to be convergent. Positivity of fully discrete solution is discussed, and bounds on time step are discovered for which the solution preserves its positivity. Finally, numerical experiments are performed on some examples to demonstrate the effectiveness of the scheme. The proposed scheme found to be fast, easy and accurate.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1652–1677, 2017
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.