Intermetallic compounds containing f-electron elements display a wealth of superconducting phases, that are prime candidates for unconventional pairing with complex order parameter symmetries. For instance, superconductivity has been found at the border of magnetic order as well as deep within ferro-and antiferromagnetically ordered states, suggesting that magnetism may promote rather than destroy superconductivity. Superconductivity near valence transitions, or in the vicinity of magneto-polar order are candidates for new superconductive pairing interactions such as fluctuations of the conduction electron density or the crystal electric field, respectively. The experimental status of the study of the superconducting phases of f-electron compounds is reviewed.