UTe2 is one triplet superconductor that defies conventional relation between ferromagnetism and superconductivity. Our search for a theoretical explanation starts with one spin-triplet state of two electrons and construct a two-particle exchange interaction that favors the formation of Cooper pairs under the configuration. A modified application of the Bardeen–Cooper–Schrieffer (BCS) theory using parameters derived from ab-initio density functional calculations for electrons and phonons enables us to derive the critical temperature of 1.64 K and an average superconducting gap of 0.25 meV at 0 K. We extend the investigation further into the superconductivity under pressure, showing how Tc and the gap of UTe2 change under compression in ways that are consistent with the results of experiment.