The design of a high pressure (HP) cell for neutron reflectivity experiments is described. The cell can be used to study solid-liquid interfaces under pressures up to 2500 bar (250 MPa). The sample interface is based on a thick silicon block with an area of about 14 cm(2). This area is in contact with the sample solution which has a volume of only 6 cm(3). The sample solution is separated from the pressure transmitting medium, water, by a thin flexible polymer membrane. In addition, the HP cell can be temperature-controlled by a water bath in the range 5-75°C. By using an aluminum alloy as window material, the assembled HP cell provides a neutron transmission as high as 41%. The maximum angle of incidence that can be used in reflectivity experiments is 7.5°. The large accessible pressure range and the low required volume of the sample solution make this HP cell highly suitable for studying pressure-induced structural changes of interfacial proteins, supported lipid membranes, and, in general, biomolecular systems that are available in small quantities, only. To illustrate the performance of the HP cell, we present neutron reflectivity data of a protein adsorbate under high pressure and a lipid film which undergoes several phase transitions upon pressurization.