This work reports on the behavior of β-carotene within a silica matrix prepared by the sol-gel method. Results show that highly pure β-carotene integrates with the silica to form a silica-based composite. The interaction exhibited between the inorganic matrix and the β-carotene results in a π-d conjugated system that guarantees the development of the protective mechanism of the β-carotene and stabilizes the organic molecule, allowing its preservation at high calcination temperature. The spectroscopic analysis, made through fluorescence emission and infrared spectroscopy, shows the presence of βcarotene within the silica matrix after the composite was calcined at 1000°C. Furthermore, the structural interactions of the β-carotene with the silica and the protective function of the β-carotene change the crystallization route naturally followed by the silica when exposed to increasing temperature. In this case, the amorphous silica matrix is preserved after high-temperature calcination, which is beneficial for biomedical applications as it allows the release and transport of the β-carotene to take full advantage of its health benefits.