2021
DOI: 10.1021/acs.jpcc.0c10067
|View full text |Cite
|
Sign up to set email alerts
|

Pressure-Induced Mixed Protonic–Electronic to Pure Electronic Conduction Transition in Goethite

Abstract: The electrical conduction mechanism of the hydrous minerals under high pressure is of great significance for understanding the high conductivity of the mantle and the Earth’s internal water. Therefore, in situ alternate current impedance spectra of the micropowder goethite have been measured under pressures up to 17.1 GPa using a diamond anvil cell. The results indicate a pressure-induced conduction mechanism transition around 5 GPa from a mixed protonic and electronic conduction to pure electronic conduction.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 30 publications
0
2
0
1
Order By: Relevance
“…Moreover, this range of values we observed is in good correlation with the data in the literature on various materials with dominant electron transport and (partially) disordered structure [ 49 , 50 ]. Interestingly, the presence of mixed protonic–electronic conduction in goethite was identified by Su et al [ 51 ] in the study on electrical properties under pressure by impedance spectroscopy. It shows how different conditions can influence the overall transport mechanism.…”
Section: Resultsmentioning
confidence: 93%
“…Moreover, this range of values we observed is in good correlation with the data in the literature on various materials with dominant electron transport and (partially) disordered structure [ 49 , 50 ]. Interestingly, the presence of mixed protonic–electronic conduction in goethite was identified by Su et al [ 51 ] in the study on electrical properties under pressure by impedance spectroscopy. It shows how different conditions can influence the overall transport mechanism.…”
Section: Resultsmentioning
confidence: 93%
“…Conversely, the activation energy for DC conductivity, E DC , follows the opposite trend, with values increasing in the 73.0-82.5 kJmol −1 range. The pathway involving migration along the double chain ([001] direction) through shared octahedral edges, with electron transport mediated by O and OH species, is characterized by Fe atoms with parallel spins and with the shortest Fe 2+ -Fe 3+ distance of approximately 3 Å. Su et al [55] studied the electrical conduction mechanism of goethite under pressures up to 17.1 GPa using impedance spectroscopy. The results indicate a pressure-induced conduction mechanism transition around 5 GPa from mixed protonic-electronic conduction to pure electronic conduction, which is associated with the pressureinduced magnetic state transition.…”
Section: Electrical Properties-solid-state Impedance Spectra and DC C...mentioning
confidence: 99%
“…间的对应关系以及不同结构之间的相变机制, 对于拓宽 TiO 2 的应用领域有着重要 的意义. 不同于传统的合成途径,压力被认为是一种"清洁"的调控手段,可以更好 地揭示材料的结构与性能之间的关系 [7] .基于此,在过去几十年里,人们对 TiO 2 体材料和纳米材料展开了大量的研究工作. 研究表明 TiO 2 体材料和纳米材料的高 压相变存在着很大 的差异,受到样品尺寸 、形貌及生长晶向等 因素的影响 [8][9][10][11][12][13][14] .TiO 2 体材料的高压相变次序比较清晰,锐钛矿相 TiO 2 在高压下经历由锐钛 矿到 a-PbO 2 到斜锆石的结构相变 [15][16][17][18][19][20][21][22] .而对于 TiO 2 纳米材料而言,其高压相变 十分复杂,锐钛矿 TiO 2 纳米晶在高压下可能观察不到 a-PbO 2 结构 [15,23,24] ,也可 能在压力作用下发生压制无定形相变 [25] .Li 等人 [26] 对直径为 50-200 nm 的 TiO 2 纳米线进行了高压研究,认为其相变顺序与尺寸大于 10 nm 的 TiO 2 纳米晶相 似.此外,对掺杂 TiO 2 纳米粒子 [8] 和 TiO 2 纳米片 [27] 的高压研究中也观察到了独 特的高压特性. 但是, 对于 TiO 2 体材料和纳米材料的高压研究工作多集中于高压下的结构相 变,而对压力作用下材料性质变化的研究较少,尤其是针对高压下锐钛矿 TiO 2 的晶界性质、晶体中缺陷行为等方面的研究更是鲜有报道.随着科技的发展,高 压原位阻抗谱测量技术已广泛应用于体材料和纳米材料晶界行为的相关研究 [28][29][30][31][32][33] 检测窗口,详细的金刚石砧面微电路的集成过程参照我们前期的工作 [30] .为了测 量电学及样品内部界面信息,实验中没有使用任何传压介质,实验过程中压力的 标定采用红宝石进行标压 [34] . 交流阻抗谱电学测量的频率范围为 10 MHz-0. [35] .如果在阻抗谱的低频区域,主弧后面观察到一个"尾链",表明存在电极效 应 [36,37] .在复阻抗平面图中,如果晶界弛豫时间和晶粒弛豫时间相差两个数量级 以上,则可以很好地分辨出两条半圆弧 [38] .如果在谱图中没有观察到两条完整半 圆弧(如只有一个不规则圆弧等),则说明晶粒和晶界的弛豫时间相差小于两个…”
unclassified