Black phosphorus was first synthesized by Bridgman in 1914 [1] but has been less intensively studied in the past century due The successful isolation of phosphorene (atomic layer thick black phosphorus) in 2014 has currently aroused the interest of 2D material researchers. In this review, first, the fundamentals of phosphorus allotropes, phosphorene, and black phosphorus, are briefly introduced, along with their structures, properties, and synthesis methods. Second, the readers are presented with an overview of their energy applications. Particularly in electrochemical energy storage, the large interlayer spacing (0.53 nm) in phosphorene allows the intercalation/deintercalation of larger ions as compared to its graphene counterpart. Therefore, phosphorene may possess greater potential for high electrochemical performance. In addition, the status of lithium ion batteries as well as secondary sodium ion batteries is reviewed. Next, each application for energy generation, conversion, and storage is described in detail with milestones as well as the challenges. These emerging applications include supercapacitors, photovoltaic devices, water splitting, photocatalytic hydrogenation, oxygen evolution, and thermoelectric generators. Finally the fast-growing dynamic field of phosphorene research is summarized and perspectives on future possibilities are presented calling on the efforts of chemists, physicists, and material scientists