Civil engineers are always looking for innovative techniques for reducing the settlement and improving the bearing capacity of the subsoil. A large number of such techniques are available in literature. These techniques are costly, limited by the site condition and are difficult to apply to the existing footings in certain circumstances. In this context, skirted footings offer an alternative method which can be applied for the shallow footings. Skirted footings are generally constructed with steel or concrete. Such footings have a raft with a thin wall along its edge towards the subsoil. The skirt enters into the soil under the footing, making an enclosure where the soil is firmly confined. Inside the skirts, the confined soil acts as a single unit to transfer the structural load from the bottom edge of the skirt to the subsoil. Skirted footings can be used as an alternative to surface, pier and pile foundations for offshore structures, wind turbines, oil platforms, and jacket structures as reported by Byrne et al. [1]. The unskirted/skirted model plus and double box shaped footings were therefore used in the present work to study their behaviour through laboratory tests. Such unconventional geometry in certain cases is