Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Both the pretectum (PT) and the superior colliculus (SC) play an important role in directing eye movements and in sensorimotor coupling. A reciprocal connection between the PT and the SC has been described, which suggests a strong interplay between these two structures. We injected the cat SC with retrograde tracers and examined the labeled pretectotectal (PTT) cells at the light and electron microscopic level. PTT cells were distributed mostly in the nucleus of the optic tract and 93.1% contained gamma amino butyric acid (GABA). We also observed that PTT cells are located outside of pretectal regions distinguished by dense retinal terminals and clusters of cells that contain calbindin. This suggests that the GABAergic PTT cells are distinct from the GABAergic pretectogeniculate cells that have been previously described as being distributed within these regions. Finally, to determine the synaptic targets of PTT terminals, we injected the PT with anterograde tracers and examined terminals labeled in the SC at the ultrastructural level. The labeled PTT terminals were beaded fibers that were distributed mainly within the stratum griseum superficiale (SGS) of the SC. Using postembedding immunocytochemistry, 94.5% were found to be GABAergic. The PTT terminals were mostly small in size and primarily contacted GABA-negative dendrites (88.1%) and in some cases somata (4.7%). The remainder terminated on GABAergic dendrites (7.2%). Our results suggest that the PTT cells constitute a separate population of GABAergic efferent cells in the PT, which may function to inhibit the activity of non-GABAergic SC efferent cells in the SGS.
Both the pretectum (PT) and the superior colliculus (SC) play an important role in directing eye movements and in sensorimotor coupling. A reciprocal connection between the PT and the SC has been described, which suggests a strong interplay between these two structures. We injected the cat SC with retrograde tracers and examined the labeled pretectotectal (PTT) cells at the light and electron microscopic level. PTT cells were distributed mostly in the nucleus of the optic tract and 93.1% contained gamma amino butyric acid (GABA). We also observed that PTT cells are located outside of pretectal regions distinguished by dense retinal terminals and clusters of cells that contain calbindin. This suggests that the GABAergic PTT cells are distinct from the GABAergic pretectogeniculate cells that have been previously described as being distributed within these regions. Finally, to determine the synaptic targets of PTT terminals, we injected the PT with anterograde tracers and examined terminals labeled in the SC at the ultrastructural level. The labeled PTT terminals were beaded fibers that were distributed mainly within the stratum griseum superficiale (SGS) of the SC. Using postembedding immunocytochemistry, 94.5% were found to be GABAergic. The PTT terminals were mostly small in size and primarily contacted GABA-negative dendrites (88.1%) and in some cases somata (4.7%). The remainder terminated on GABAergic dendrites (7.2%). Our results suggest that the PTT cells constitute a separate population of GABAergic efferent cells in the PT, which may function to inhibit the activity of non-GABAergic SC efferent cells in the SGS.
The feeding motivation of the common European common toad (Bufo bufo) can be quantified by the feeding sequence of arousal-orientation-approach-fixate-snap. Previous work has found that the optic tectum is an important structure responsible for the mediation of feeding behaviors, and combined electrical and visual stimulation of the optic tectum was found to increase the animals feeding behaviors. However, the pretectal thalamus has an inhibitory influence upon the optic tectum and its lesion results in disinhibited feeding behaviors. This suggests that feeding behavior of anurans is also subject to influence from the pretectal thalamus. Previous studies involving the application of DC stimulation to brain tissue has generated slow potential shifts and these shifts have been implicated in the modulation of the neural mechanisms associated with behavior. The current study investigated the application of DC stimulation to the diencephalon surface dorsal to the lateral posterodorsal pretectal thalamic nucleus in Bufo bufo, in order to assess effects on feeding motivation. The application of DC stimulation increased the incidence of avoidance behaviors to a visual prey stimulus while reducing the prey catching behavior component of approach, suggesting that the DC current applied to the pretectum increased the inhibition upon the feeding elements of the optic tectum. This can be explained by the generation of slow potential shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.