Pretraining and Adaptation Techniques for Electrolaryngeal Speech Recognition
Lester Phillip Violeta,
Ding Ma,
Wen-Chin Huang
et al.
Abstract:We investigate state-of-the-art automatic speech recognition (ASR) systems and provide thorough investigations on training methods to adapt them to low-resourced electrolaryngeal (EL) datasets. Transfer learning is often sufficient to resolve low-resourced problems; however, in EL speech, the domain shift between the pretraining and fine-tuning data is too large to overcome, limiting the ASR performance. We propose a method of reducing the domain shift gap during transfer learning between the healthy and EL da… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.